SYNTHETIC STUDIES TOWARD MITOMYCINS. III.¹ TOTAL SYNTHESES OF MITOMYCINS A AND C.

T. Fukuyama, F. Nakatsubo, A. J. Cocuzza, and Y. Kishi^{*}
Department of Chemistry, Harvard University
12 Oxford Street, Cambridge, Massachusetts 02138, U. S. A.

(Received in USA 19 September 1977; received in UK for publication 14 October 1977)

The mitomycins (<u>la-e</u>) are a class of antibiotics with activity against Grampositive and Gram-negative bacteria and also against several kinds of tumors.² Since their structures were first elucidated in 1962,² numerous synthetic approaches to the mitomycins have been reported.³ We have recently reported the first total synthesis of porfiromycin (<u>ld</u>), one of the naturally occurring mitomycins.¹ In this communication, we wish to describe the first total syntheses of mitomcyins A (<u>la</u>) and C (<u>lc</u>) by a synthetic route similar to the one we have used for the synthesis of porfiromycin (<u>ld</u>).

la : mitomycin A ; X=OCH₃, Y=H lb : mitomycin B ; see reference 4. lc : mitomycin C ; X=NH₂, Y=H ld : porfiromycin ; X=NH₂, Y=CH₃ le : mitiromycin ; see reference 5. One of the key steps of our porfiromycin synthesis was the intramolecular Michael reaction of $\underline{2}$ to construct the eight-membered quinone $\underline{3}$. On attempting the Micahel reaction on the aziridine $\underline{4}$, we observed the formation of two products in about a 5:1 ratio. The minor product was the desired eight-membered quinone $\underline{5}$, while the major product was most likely formed by an interaction of the aziridine nitrogen with the C.1 carbonyl group.⁶ Thus, protection of the aziridine nitrogen is required in order to apply this cyclization reaction to the total syntheses of mitomycins A ($\underline{1a}$) and C ($\underline{1c}$). The 3-acetoxypropyl group was chosen since conventional protecting groups such as acetyl, benzoyl, ethoxycarbonyl, methoxymethyl etc. proved unsuccessful for the present purposes.

Dibenzylamine aziridine 6^1 was converted to 3-acetoxypropylaziridine $\frac{7}{2}^7$ [oil; nmr (CDCl₃) δ 1.90 ppm (3H, s), 2.18 (3H, s), 3.02 (3H, s), 3.17 (3H, s), 3.75 (3H, s)] in 3 steps (1. CH₂=CHCHO/CH₂Cl₂/RT, 2. BH₃/THF-CH₂Cl₂/-78°C---RT, 3. Ac₂O-Py/RT) in 78% overall yield. Hydrogenolysis (H₂/Pd-C/AcOH/RT) of <u>7</u>, followed by treatment with oxygen (O2/CH3OH/RT), yielded the eight-membered quinone 8⁷ [oil; ms M⁺ found 438.1984, C₂₁H₃₀N₂O₈ requires 438.2002; nmr (CDCl₃) δ 1.86 ppm (3H, s), 2.02 (3H, s), 3.15 (3H, s), 3.36 (3H, s), 4.03 (3H, s); uv (CH₃OH) λ_{max} 219 nm (log ϵ 4.32), 305 (4.12), 505 (3.11)] in 42% yield. Careful treatment of 8 with tetrafluoroboric acid in methylene chloride at room temperature afforded exclusively decarbamoyl-N₁-(3-acetoxypropyl)mitomycin A $(9)^7$ [77% yield; ms M^+ found 406.1716, $C_{20}H_{26}N_2O_7$ requires 406.1740; nmr (CDCl₃) δ 1.85 ppm (3H, s), 1.99 (3H, s), 3.15 (3H, s), 4.05 (3H, s); uv (CH₃OH) λ_{max} 218 nm (log ϵ 4.27), 320 (3.98), 530 (2.99)], which was converted to N₁-(3-acetoxypropyl)mitomycin A (10)⁷ [85% yield; ms M⁺ found 449.1805, $C_{21}H_{27}N_3O_8$ requires 449.1798; nmr (CDCl₃) δ 1.84 ppm (3H, s), 2.00 (3H, s), 3.15 (3H, s), 4.05 (3H, s); uv (CH₃OH) λ_{max} 217 nm (log ϵ 4.21), 320 (3.98), 530 (3.08)]. The stereospecific cyclization reaction of the eight-membered quinone 3 to the mitosane 11has been discussed in our earlier communication.¹ The protecting group of the aziridine moiety of 10 was removed in 3 steps [1. NaOCH3/CH3OH-CH2Cl2/RT, 2. DMSO-DCC/TFA-Py/RT, 3. HClO₄/C₆H₅N(CH₃)₂/CH₂Cl₂/RT] to give d,l-mitomycin A

 $(\underline{1a})^7$ (mp 163-165^oC dec.) in 35% yield. The synthetic substance was identical with natural mitomycin A⁸ in all respects (nmr, uv, ms, ir, and tlc). The transformation of mitomycin A (<u>1a</u>) to mitomycin C (<u>1c</u>) and porfiromycin (<u>1d</u>) has been previously reported.⁹

<u>Acknowledgement</u>. Financial assistance from National Institutes of Health, National Science Foundation, and Hoffmann-La Roche Company is gratefully acknowledged.

References and Footnotes

- Part II of this series, F. Nakatsubo, T. Fukuyama, A. J. Cocuzza, and
 Y. Kishi, submitted to J. Am. Chem. Soc.
- See, for example, <u>The Merck Index 9th Edition</u>, ed. M. Windholz, Merck & Co., Rahway, N. J., 1976, p 807 ff and references cited therein.
- See the references cited in the Part I of this series [F. Nakatsubo, A. J. Cocuzza, D. E. Keeley, and Y. Kishi, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 4835 (1977)].
- 4. The structure of mitomycin B including its absolute configuration was recently confirmed by X-ray crystallography; R. Yahashi and I. Matsubara, J. Antibiot., 29, 104 (1976).
- 5. G. O. Morton, G. E. Van Lear, and W. Fulmor, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 2588 (1970).
- 6. Elucidation of the complete structure of this product is in progress.
- 7. Satisfactory spectroscopic data were obtained for this substance.
- We are indebted to Dr. J. S. Webb, Lederle Laboratories, and Dr. K. Nakano,
 Kyowa Hakko Kogyo Co., for a sample of mitomycin A.
- 9. J. S. Webb, D. B. Cosulich, J. H. Mowat, J. B. Patrick, R. W. Broschard,
 W. E. Meyer, R. P. Williams, C. F. Wolf, W. Fulmor, C. Pidachs, and J. E. Lancaster, J. Am. Chem. Soc., 84, 3185 (1962).